Shale oil saturated by high temperature (20 MPa) and high pressure (60 °C) conditions can not only realize the efficient saturation of shale, but also invert the shale oil return and drainage characteristics under the stratum temperature and pressure due to the heterogeneity of shale formations. In this study, the Chang 7 Member shale samples were collected, and the high-temperature and high-pressure containment device was utilized to saturate the shale oil efficiently under 20 MPa and 60 °C, and the differences of liquid hydrocarbon saturation and the degree of liquid hydrocarbon saturation for different types of pores and fractures in the shale were quantitatively characterized with a low-field nuclear magnetic resonance (NMR) technology. The results show that under the condition of formation temperature (60 °C) and pressure (20 MPa), shale oil saturation can be reached after 14 d of saturation in the shale samples. The shale oil saturation process can be roughly divided into three stages according to the various saturation rates: the rapid saturation stage, the slow saturation stage, and the second rapid saturation stage, and the degree of saturation of shale oil is characterized by a V-shape. The shale oil was distributed into four types of pore-fracture systems: adsorption pores, micropores, seepage fractures, and layer fractures. Additionally, the fluid dominantly distributes in the micropores and seepage fractures, the shale oil saturation degree of the micropores features a continuous increase, while that for the seepage fractures presents a V-shape, which finally determines the shale oil saturation characteristics of the shale.