Although axotomized neurons retain the ability to initiate the formation of growth cones and attempt to regenerate after spinal cord injury, the scar area formed as a result of the lesion in most adult mammals contains a variety of reactive cells that elaborate multiple extracellular matrix and enzyme components that are not suitable for regrowth. Newly migrating axons in the vicinity of the scar utilize upregulated LAR family receptor protein tyrosine phosphatases, such as PTPσ, to associate with extracellular chondroitin sulphate proteoglycans (CSPGs), which have been discovered to tightly entrap the regrowing axon tip and transform it into a dystrophic non-growing endball. The scar is comprised of two compartments, one in the lesion penumbra, the glial scar, composed of reactive microglia, astrocytes and OPCs; and the other in the lesion epicenter, the fibrotic scar, which is made up of fibroblasts, pericytes, endothelial cells and inflammatory cells. While the fibrotic scar is known to be strongly inhibitory, even more so than the glial scar, the molecular determinants that curtail axon elongation through the injury core are largely uncharacterized. Here, we show that one sole member of the entire family of collagens, collagen I, creates an especially potent inducer of endball formation and regeneration failure. The inhibitory signaling is mediated by mechanosensitive ion channels and RhoA activation. Staggered systemic administration of two blood-brain barrier permeable-FDA approved drugs, aspirin and pirfenidone, reduced fibroblast incursion into the complete lesion and dramatically decreased collagen I, as well as CSPG deposition which were accompanied by axonal growth and functional recovery. The anatomical substrate for robust axonal regeneration was provided by laminin producing GFAP+ and NG2+ bridging cells that spanned the wound. Our results reveal a collagen I-mechanotransduction axis that regulates axonal regrowth in spinal cord injury and raise a promising strategy for rapid clinical application.