2016
DOI: 10.1080/00036811.2016.1227970
|View full text |Cite
|
Sign up to set email alerts
|

Recovery of interior eigenvalues from reduced near field data

Abstract: We consider inverse obstacle and transmission scattering problems where the source of the incident waves is located on a smooth closed surface that is a boundary of a domain located outside of the obstacle/inhomogeneity of the media. The domain can be arbitrarily small but fixed.The scattered waves are measured on the same surface. An effective procedure is suggested for recovery of interior eigenvalues by these data.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
1

Year Published

2017
2017
2019
2019

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(4 citation statements)
references
References 30 publications
0
3
0
1
Order By: Relevance
“…Define operator L : Remark. An outline of this proof can be found in [9]. Note also the integral kernels of operators L, L * are infinitely smooth, and the arguments below prove that their ranges are dense in any Sobolev space H s , s ≥ 0, not only in L 2 .…”
Section: The Main Resultsmentioning
confidence: 89%
See 2 more Smart Citations
“…Define operator L : Remark. An outline of this proof can be found in [9]. Note also the integral kernels of operators L, L * are infinitely smooth, and the arguments below prove that their ranges are dense in any Sobolev space H s , s ≥ 0, not only in L 2 .…”
Section: The Main Resultsmentioning
confidence: 89%
“…Thus F S ϕ is not the scattered wave produced by sources on S with the density ϕ. However, u sc | S = F S ϕ can be obtained (and measured) as a scattered field on S produced by some waves emitted from S. Namely, the following lemma holds (see [9]). Lemma 2.2.…”
Section: The Main Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Б. Р. Вайнберг опубликовал серию работ с Е. Л. Лакштановым [39], [41], [46] о внутренних трансмиссионных собственных значениях (объект, возникающий в рассеянии на препятствиях). В частности, они получили новый закон Вейля, в котором собственные значения подсчитываются со знаком плюс или минус в зависимости от направления вращения соответствующего собственного значения матрицы рассеяния.…”
unclassified