We expressed a glucansucrase, DsrI, from Leuconostoc mesenteroides that catalyzes formation of water-insoluble glucans from sucrose using a nisin-controlled gene expression system in Lactococcus lactis. These polymers have potential for production of biodegradable gels, fibers, and films. We optimized production of DsrI using several different background vectors, signal peptides, strains, induction conditions, and bioreactor parameters to increase extracellular accumulation. Optimal production of the enzyme utilized a high-copy plasmid, pMSP3535H3, which contains a nisin immunity gene, L. lactis LM0230, and bioreactors maintained at pH 6.0 to stabilize the enzyme. We were able to significantly improve growth using the lactic acid inhibitor heme and by continuous removal of lactic acid with anion exchange resins, but enzyme production was less than the controls. The recombinant enzyme under optimized conditions accumulated in the culture medium to approximately 380 mg/L, which was over 150-fold higher compared to the native L. mesenteroides strain. Methods are also included for purification of DsrI utilizing the glucan-binding domain of the enzyme.