2023
DOI: 10.17559/tv-20221103085856
|View full text |Cite
|
Sign up to set email alerts
|

Recovery of Outliers in Water Environment Monitoring Data

Abstract: The water environment monitoring data are time sequences with outliers which depress the data quality, so outlier detection and recovery play an important role in the applications such as knowledge acquisition and prediction modelling of water environment indicators. To detect the outliers, the short-term chain comparison with the sliding window based on the time sequence characteristics is adopted. To recover outliers closer to the real data at that time, the sub-sequences are divided dynamically according to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?