Diffusion dialysis (DD) is an anion exchange membrane-based functional separation process used for acid recovery. TMA (trimethylamine) and BPPO (brominated poly (2,6-dimethyl-1,4-phenylene oxide) were utilized in this manuscript to formulate AEMs (anion exchange membranes) for DD (diffusion dialysis) using the phase-inversion technique. FTIR (Fourier transfer infrared) analysis, proton NMR spectroscopy, morphology, IEC (ion exchange capacity), LER (linear expansion ratio), CR (fixed group concentration), WR (water uptake/adsorption), water contact angle, chemical, and thermal stability, were all used to evaluate the prepared membranes. The effect of TMA content within the membrane matrix on acid recovery was also briefly discussed. It was reported that porous AEMs have a WR of 149.6% to 233.8%, IEC (ion exchange capacity) of 0.71 to 1.43 mmol/g, CR (fixed group concentration) that ranged from 0.0046 mol/L to 0.0056 mol/L, LER of 3.88% to 9.23%, and a water contact angle of 33.10° to 78.58°. The UH (acid dialysis coefficients) for designed porous membranes were found to be 0.0043 to 0.012 m/h, with separation factors (S) ranging from 13.14 to 32.87 at the temperature of 25 °C. These observations are comparable to those found in the DF-120B commercial membrane with UH of 0.004 m/h and S of 24.3 m/h at the same temperature (25 °C). This porous membranes proposed in this paper are excellent choices for acid recovery through the diffusion dialysis process.