We investigated the effects of three seasonal atmospheric ozone (0,) concentrations on fruit quality, internal breakdown, weight loss, cuticle structure, and ripening characteristics of plum fruit from 3-year-old `Casselman' trees in the 1991 season. Trees were exposed to 12-hour daily mean O3 concentrations of 0.034 [charcoal-filtered air (CFA)], 0.050 [ambient air (AA)], or 0.094 [ambient plus O3 (AA+O)] μl·liter-1 from bloom to leaf-fall (1 Apr. to31 Oct. 1991). Fruit quality and internal breakdown incidence measured at harvest and after 2, 4, and 6 weeks of storage at 0C were not affected by any of the O3 treatments. Following an ethylene (C2H4) preconditioning treatment, the rate of fruit softening, C2H4 production, and CO, evolution was higher for plums harvested from the AA + O than from those grown in CFA. Weight loss of fruit from the AA + O exceeded that of fruit from CFA and AA. Anatomical studies of mature plums indicated differences in wax deposition and cuticle thickness between fruit grown in AA + O, AA, and CFA. Differences in gas permeability, therefore, may explain the difference in the ripening pattern of `Casselman' plum fruit grown in high atmospheric O3 partial pressures.