The main regularities in the impact of varying intensity impact-oscillatory loading on the variation of the mechanical and structural properties of the VT23 high-strength two-phase transverse-rolled sheet titanium alloy have been found. The intensity of the impulse introduction of energy into the alloy under the dynamic non-equilibrium process (DNP) was estimated by εimp (the increment of dynamic strain). The pulse intensity was found to change the shape of the static strain diagram with further tensioning, as compared to the initial state. This indicates the effect from the structure self-organization inherent in the VT23 titanium alloy upon the DNP. After the DNP (εimp = 1.44%), with further static deformation, the tensile diagram revealed yield sites up to 6.5% long. In most cases, the DNP was found to have a negative effect on the variation of the mechanical properties of the VT23 titanium alloy, especially if the latter was rolled in the transverse direction. The optimal DNP intensity is εimp~1.5%. In this case, the DNP can be used as an effective plasticization technology for the VT23 titanium alloy (regardless of the rolling direction) in the stamping of high-strength titanium alloys. Changes in the mechanical and structural condition of the VT23 titanium alloy subjected to the DNP were confirmed by the fractographic investigation of specimen fractures.