The measurement of pleural (or intrathoracic) pressure is a key element for a proper setting of mechanical ventilator assistance as both under- and over-assistance may cause detrimental effects on both the lungs and the diaphragm. Esophageal pressure (Pes) is the gold standard tool for such measurements; however, it is invasive and seldom used in daily practice, and easier, bedside-available tools that allow for rapid and continuous monitoring are greatly needed. The tidal swing of central venous pressure (CVP) has long been proposed as a surrogate for pleural pressure (Ppl); however, despite the wide availability of central venous catheters, this variable is very often overlooked in critically ill patients. In the present narrative review, the physiological basis for the use of CVP waveforms to estimate Ppl is presented; the findings of previous and recent papers that addressed this topic are systematically reviewed, and the studies are divided into those reporting positive findings (i.e., CVP was found to be a reliable estimate of Pes or Ppl) and those reporting negative findings. Both the strength and pitfalls of this approach are highlighted, and the current knowledge gaps and direction for future research are delineated.