Fibrillary GN (FGN) is a rare glomerular disease that is diagnosed based on the presence of fibrils in glomeruli. The fibrils are typically noncongophilic, randomly oriented, and measure 12–24 nm. Traditionally, electron microscopy (EM) has been an important tool to aid in the diagnosis of FGN by identifying the fibrils and to distinguish it from other entities that could mimic FGN. However, recently DnaJ homolog subfamily B member 9 (DNAJB9) has emerged as both a specific and sensitive biomarker in patients with FGN. It allows prompt diagnosis and alleviates reliance on EM. DNAJB9 is a cochaperone of heat shock protein 70 and is involved in endoplasmic reticulum protein-folding pathways. But its role in the pathogenesis of FGN remains elusive. DNAJB9 may act as a putative antigen or alternatively it may secondarily bind to misfolded IgG in the glomeruli. These hypotheses need future studies to elucidate the role of DNAJB9 in the pathogenesis of FGN. The treatment regimen for FGN has been limited due to paucity of studies. Most patients receive combination immunosuppressive regimens. Rituximab has been studied the most in FGN and it may delay disease progression. Prognosis of FGN remains poor and 50% require dialysis within 2 years of diagnosis. Despite its poor prognosis in native kidneys, the rate of recurrence post-transplantation is low (20%) and patient as well as allograft outcomes are similar to patients without FGN.