High-risk neuroblastoma remains a major problem in pediatric oncology, accounting for 15% of childhood cancer deaths. Although incremental improvements in outcome have been achieved with the intensification of conventional chemotherapy agents and the addition of 13-cis-retinoic acid, only one-third of children with high-risk disease are expected to be long-term survivors when treated with current regimens. In addition, the cost of cure can be quite high, as surviving children remain at risk for additional health problems related to long-term toxicities of treatment. Further advances in therapy will require the targeting of tumor cells in a more selective and efficient way so that survival can be improved without substantially increasing toxicity. In this review we summarize ongoing clinical trials and highlight new developments in our understanding of the molecular biology of neuroblastoma, emphasizing potential targets or pathways that may be exploitable therapeutically.