Fires are common in Mediterranean soils and constitute an important driver of their evolution. Although fire effects on vegetation dynamics are widely studied, their influence on the assembly rules of soil prokaryotes in a small-scale environment has attracted limited attention. In the present study, we reanalyzed the data from Aponte et al. (2022) to test whether the direct and/or indirect effects of fire are reflected in the network of relationships among soil prokaryotes in a Chilean sclerophyllous ecosystem. We focused on bacterial (genus and species level) co-occurrence patterns in the rhizospheres and bulk soils in burned and unburned plots. Four soils were considered: bulk-burnt (BB), bulk-unburnt (BU), rhizosphere-burnt (RB), and rhizosphere-unburnt (RU). The largest differences in network parameters were recorded between RU and BB soils, while RB and BU networks exhibited similar values. The network in the BB soil was the most compact and centralized, while the RU network was the least connected, with no central nodes. The robustness of bacterial communities was enhanced in burnt soils, but this was more pronounced in BB soil. The mechanisms mainly responsible for bacterial community structure were stochastic in all soils, whether burnt or unburnt; however, communities in RB were much more stochastic than in RU.