2015
DOI: 10.1016/j.ijleo.2015.08.278
|View full text |Cite
|
Sign up to set email alerts
|

Recursive weighted multi-plateau histogram equalization for image enhancement

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0
2

Year Published

2016
2016
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 21 publications
(7 citation statements)
references
References 18 publications
0
5
0
2
Order By: Relevance
“…Dimana dalam penelitian tersebut dilakukan penilaian performa kualitas citra dengan menggunakan ekstraksi fitur entropy dan deviasi standar. Pada penelitian M. Ali juga melakukan penilaian kualitas hasil histogram menggunakan deviasi standar [8] [9].…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Dimana dalam penelitian tersebut dilakukan penilaian performa kualitas citra dengan menggunakan ekstraksi fitur entropy dan deviasi standar. Pada penelitian M. Ali juga melakukan penilaian kualitas hasil histogram menggunakan deviasi standar [8] [9].…”
Section: Pendahuluanunclassified
“…Untuk mendapatkan tekstur berbasis Histogram diambil 2 fitur yang dipilih, yaitu rata-rata intensitas dan deviasi standar (DS) [8][11]. Fitur pertama yang dihitung secara statistis adalah average intensitas.…”
Section: Tingkat Kualitas Citraunclassified
“…By contrast, regions comprising a relatively small number of pixels may be eliminated, resulting in the so-called washed-out appearance. 24 In order to solve this issue, the improved histogram equalization technique studies [25][26][27][28][29][30][31][32][33][34][35][36] divide the image into several sub-regions for histogram equalization. The original brightness of the image is maintained, therefore avoiding excessive enhancement of image information.…”
Section: Introductionmentioning
confidence: 99%
“…This method created visually pleasant enhancement effects while eliminating the problem of over enhancement. Qadar et al proposed the recursive weighted multi‐plateau histogram equalization (RWMPHE) to segment the histogram into two or more sub histograms followed by clipping with six plateau limits. The weighting module modified the probability density of each sub‐histogram by the normalized power law before histogram equalization.…”
Section: Introductionmentioning
confidence: 99%
“…Finally, all subimages are merged into a single image on the global grayscale histogram. The improved algorithms include brightness-preserving bi-HE (BBHE) [13,14], recursive mean-separate HE (RMSHE) [15][16][17], dualistic subimage HE (DSIHE) [18,19], minimum mean brightness error bi-HE (MMBEBHE) [20,21], and weighting meanseparated sub-HE (WMSHE) [22,23].…”
Section: Introductionmentioning
confidence: 99%