Stimuli-responsive conductive hydrogels have a wide range of applications due to their intelligent sensing of external environmental changes, which are important for smart switches, soft robotics, and flexible sensors. However, designing stimuli-responsive conductive hydrogels with logical operation, such as smart switches, remains a challenge. In this study, we synthesized pH-responsive conductive hydrogels, based on the copolymer network of acrylic acid and hydroxyethyl acrylate doped with graphene oxide. Using the good flexibility and conductivity of these hydrogels, we prepared a flexible sensor that can realize the intelligent analysis of human body motion signals. Moreover, the pH-responsive conductive hydrogels were integrated with temperature-responsive conductive hydrogels to develop logic gates with sensing, analysis, and driving functions, which realized the intellectualization of conductive hydrogels.