This work presents the research results on the development of an innovative, hydrometallurgical technology for the production of manganese(II) perrhenate dihydrate from recycled waste. These wastes are scraps of Ni-based superalloys containing Re and scraps of Li–ion batteries containing Mn—specifically, solutions from the leaching of black mass. This work presents the conditions for the production of Mn(ReO4)2·2H2O. Thus, to obtain Mn(ReO4)2·2H2O, manganese(II) oxide was used, precipitated from the solutions obtained after the leaching of black mass from Li–ion batteries scrap and purified from Cu, Fe and Al (pH = 5.2). MnO2 precipitation was carried out at a temperature < 50 °C for 30 min using a stoichiometric amount of KMnO4 in the presence of H2O2. MnO2 precipitated in this way was purified using a 20% H2SO4 solution and then H2O. Purified MnO2 was then added alternately with a 30% H2O2 solution to an aqueous HReO4 solution. The reaction was conducted at room temperature for 30 min to obtain a pH of 6–7. Mn(ReO4)2·2H2O precipitated by evaporating the solution to dryness was purified by recrystallization from H2O with the addition of H2O2 at least twice. Purified Mn(ReO4)2·2H2O was dried at a temperature of 100–110 °C. Using the described procedure, Mn(ReO4)2·2H2O was obtained with a purity of >99.0%. This technology is an example of the green transformation method, taking into account the 6R principles.