In this paper, the possibility of retreated lithium slag (RTLS) with a high content of alkali, sulfate and fluoride as a partial replacement for fly ash (FA) to produce autoclaved aerated concrete (AAC) was investigated. The influence of the RTLS dosage on the AAC performance were examined. The composition and microstructure of hydrates as well as the microstructure of the RTLS-FA-based AAC compositions were determined by XRD, FTIR, TG-DSC and SEM. The results illustrated that the incorporation of RTLS changed the crystal structure and the microstructure of the tobermorite. With increased RTLS contents, the morphology of tobermorite was changed, and the grass-like tobermorite gradually transformed into network-like tobermorite. The newly formed tobermorite improved the mechanical performance of the AAC. Compared with the RTLS10, the content of tobermorite in the RTLS30 increased by 8.6%.