Red blood cell dynamics during malaria infection challenge the assumptions of mathematical models of infection dynamics
Madeline Amanda Erzen Peters,
Aaron A. King,
Nina Wale
Abstract:For decades, mathematical models have been used to understand the course and outcome of malaria infections (i.e., infection dynamics) and the evolutionary dynamics of the parasites that cause them. A key conclusion of these models is that red blood cell (RBC) availability is a fundamental driver of infection dynamics and parasite trait evolution. The extent to which this conclusion holds will in part depend on model assumptions about the host-mediated processes that regulate RBC availability i.e., removal of u… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.