Adult clover root weevil Sitona lepidus show a feeding preference for white clover Trifolium repens over red clover Trifolium pratense. The effects on S. lepidus of three red clover T. pratense lines, selected for high, medium, or low levels of the isoflavone formononetin in foliage, were compared in three experiments using white clover as a control. In a no-choice slant board experiment, weevil larval weights were greater for larvae feeding on white clover roots than those feeding on roots of the red clovers. The effect of larval root herbivory on plant growth was similar for all four clovers. Following root herbivory, a large increase in root and shoot formononetin levels was observed in the high-formononetin selection of red clover but little change in the low-formononetin red clover. In a no-choice experiment with sexually mature female adult weevils feeding on foliage of the four clovers, all the red clovers had increased weevil mortality. Female weevils eating the high-formononetin red clover laid fewer eggs than weevils eating white clover. The red clover diet caused a large accumulation of abdominal fat and/or oil in the weevils, whereas weevils feeding on white clover did not accumulate fat/oil. When sexually immature adult weevils were given a choice of foliage from all four clovers, white clover was eaten preferentially, and the low-formononetin red clover was preferred to the high-formononetin red clover. The results suggest that formononetin and associated metabolites in red clover may act as chemical defences against adult S. lepidus and that distribution in forage legumes can be manipulated by plant breeding to improve root health.