For two well-known modulation methods, stepwise current modulation (SCM) and pulse width modulation (PWM), the effects of driving current modulation conditions on chromaticity were experimentally investigated in a white LED lighting system. For the experimental implementation of both SCM and PWM, a white LED lighting was fabricated using phosphor converted (PC) white light emitting diodes (LEDs) and a driving circuit module was developed. By using them, the variations of illuminance, color coordinates, and spectrum were evaluated under various forward current conditions. Through the analysis in color coordinates, yellow shift in SCM and blue shift in PWM were observed on chromaticity diagrams with increasing average driving current. In addition, in order to analyze color deviation quantitatively, color distance before and after current increase, and the correlated color temperature (CCT) were calculated. As a result, for the white LED lighting in both modulation conditions, the maximum difference in the calculated CCT was obtained close to 1000 K. It means that careful consideration is required to be taken in the design of illumination systems to avoid serious problems such industrial accidents.