Substitute species can inform management strategies without exposing endangered species to unacceptable risk. Furthermore, experimental approaches may help to identify the causes of translocation failures, improving the chances of success. We used a surrogate subspecies, Tamiasciurus fremonti fremonti to test different translocation techniques to inform on potential management actions with regards to the endangered Mt. Graham red squirrel (Tamiasciurus fremonti grahamensis). Individuals of both subspecies defend year-round territories in similar mixed conifer forests at elevations between 2650–2750 m, where they store cones to survive over winter. We fitted VHF radio collars to 54 animals, and we monitored their survival and movements until individuals settled on a new territory. We considered the effect of season, translocation technique (soft or hard release), and body mass on survival, distance moved after release, and time to settlement of translocated animals. Survival probability averaged 0.48 after 60 days from the translocation event and was not affected by season or translocation technique. 54% of the mortality was caused by predation. Distance moved and number of days to settlement varied with season, where winter was characterized by shorter distances (average of 364 m in winter versus 1752 m in fall) and a smaller number of days (6 in winter versus 23 in fall). The data emphasized on the potential of substitute species to provide valuable information for possible outcomes of management strategies to closely related endangered species.