When utilizing the traditional path planning method for unmanned surface vehicles (USVs), ‘planning-failure’ is a common phenomenon caused by the inflection points of large curvatures in the planned path, which exceed the performances of USVs. This paper presents a second path planning method (SPP), which is an initial planning path optimization method based on the geometric relationship of the three-point path. First, to describe the motion performance of a USV in conjunction with the limited test data, a method of integral nonlinear least squares identification is proposed to rapidly obtain the motion constraint of the USV merely by employing a zig zag test. It is different from maneuverability identification, which is performed in combination with various tests. Second, the curvature of the planned path is limited according to the motion performance of the USV based on the traditional path planning, and SPP is proposed to make the maximum curvature radius of the optimized path smaller than the rotation curvature radius of the USV. Finally, based on the ‘Dolphin 1’ prototype USV, comparative simulation experiments were carried out. In the experiment, the path directly obtained by the initial path planning and the path optimized by the SPP method were considered as the tracking target path. The artificial potential field method was used as an example for the initial path planning. The experimental results demonstrate that the tracking accuracy of the USV significantly improved after the path optimization using the SPP method.