The presence of pharmaceuticals in aquatic ecosystems is an issue of increasing concern. Regardless of the low concentration of pharmaceuticals in water, they can have a toxic effect on both humans and aquatic organisms. Advanced oxidation processes (AOPs) have been described as a promising technique for eliminating pharmaceuticals due to their high efficiency. However, the cost associated with the application of these processes and their high reagents and energy requirements have affected the implementation of AOPs at large scales. Biochar has been suggested to be used as a catalyst in AOPs to overcome these limitations. Biochar is considered as an alternative heterogeneous catalyst thanks to its physicochemical characteristics like its specific surface area, porous structure, oxygen-containing functional groups, electrical conductivity, persistent free radicals (PFRs), modifiable properties, and structure defects. This carbonaceous material presents the capacity to activate oxidizing agents leading to the formation of radical species, which are needed to degrade pharmaceuticals. Additionally, AOP/biochar systems can destroy pharmaceutical molecules following a non-radical pathway. To enhance biochar catalytic performance, modifications have been suggested such as iron (Fe) impregnation, heteroatom doping, and supporting semiconductors on the biochar surface. Although biochar has been efficiently used in combination with several AOPs for the mineralization of pharmaceuticals from water, further research must be conducted to evaluate different regeneration techniques to increase biochar’s sustainable applicability and reduce the operational cost of the combined process. Moreover, operational conditions influencing the combined system are required to be evaluated to discern their effect and find conditions that maximize the degradation of pharmaceuticals by AOP/biochar systems.