X-ray magnetic circular dichroism and neutron diffraction measurements were conducted in-situ at high pressure and low temperature to investigate the evolution of the magnetic properties of Nd0.53Sr0.47MnO3 (NSMO47). The neutron diffraction data provide the experimental evidence for the presence of antiferromagnetic domains within the conducting ferromagnetic host at ambient pressure. The antiferromagnetic phase becomes dominant above 3 GPa with a concomitant reduction of the FM phase. Those findings indicate that the magnetic ground state of NSMO47 is more complex than previously reported, confirming the coexistence of competing phases over the doping range in which Colossal Magnetoresistance is observed. We also find that magnetic phase separation in the form of domains appears to be an intrinsic phenomenon at high pressure.