Redox active films have been generated via electrochemical reduction in a solution containing palladium(II) acetate and fulleropyrrolidine with covalently linked crown ethers, viz., benzo-15-crown-5 and benzo-18-crown-6. In these films, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Films show ability to coordinate alkali metal cations from the solution. Therefore, in solutions containing salts of alkali metal cations, benzo-15-crown-5-C 60 /Pd and benzo-18-crown-6-C 60 /Pd films are doped with cations coordinated by crown ether moiety and anions of supporting electrolyte which enter the film to balance positive charge. These films are electrochemically active in the negative potential range due to the reduction of the fullerene moiety. Reduction of the polymer is accompanied by the transport of supporting electrolyte ions between solution and solid phase. In solution containing alkali metal salts, the process of film reduction is accompanied by the transport of anions from the film to the solution. In the presence of tetra(alkyl) ammonium salts, transport of cations from the solution to the film takes place during the polymer reduction.