Alumina-supported VPO materials are efficient catalysts for acrylonitrile production by the propane ammoxidation reaction. In order to understand the structure-activity relationship and the nature of active sites, operando Raman-GC analyses follow the states of vanadium and phosphorous species on an alumina support during ammoxidation. These oxides were supported on γ-alumina by incipient wetness impregnation at a total V + P loading of two monolayers, which led to incipient formation of nanoscaled VPO crystallites possessing a high surface-to-volume ratio. Since catalysis occurs at the catalyst surface, which is related to the surface and outermost layers, this approach allows studying surface species phase transformations near the surface, and relates changes in activity and selectivity to variations in composition and structure. Dispersed surface V(5+) species appear selective to acetonitrile and V(4+) species would promote selectivity to acrylonitrile. This study suggests that V(3+) is probably involved in redox processes during propane ammoxidation and that the balance between these vanadium species would be determined by activation process.