Covalent inhibition is a reemerging paradigm in kinase drug design, but the roles of inhibitor binding affinity and chemical reactivity in overall potency are not well-understood. To characterize the underlying molecular processes at a microscopic level and determine the appropriate kinetic constants, specialized experimental design and advanced numerical integration of differential equations are developed. Previously uncharacterized investigational covalent drugs reported here are shown to be extremely effective epidermal growth factor receptor (EGFR) inhibitors (k inact /K i in the range 10), despite their low specific reactivity (k inact ≤ 2.1 × 10), which is compensated for by high binding affinities (K i < 1 nM). For inhibitors relying on reactivity to achieve potency, noncovalent enzyme-inhibitor complex partitioning between inhibitor dissociation and bond formation is central. Interestingly, reversible binding affinity of EGFR covalent inhibitors is highly correlated with antitumor cell potency. Furthermore, cellular potency for a subset of covalent inhibitors can be accounted for solely through reversible interactions. One reversible interaction is between EGFRCys 797 nucleophile and the inhibitor's reactive group, which may also contribute to drug resistance. Because covalent inhibitors target a cysteine residue, the effects of its oxidation on enzyme catalysis and inhibitor pharmacology are characterized. Oxidation of the EGFR cysteine nucleophile does not alter catalysis but has widely varied effects on inhibitor potency depending on the EGFR context (e.g., oncogenic mutations), type of oxidation (sulfinylation or glutathiolation), and inhibitor architecture. These methods, parameters, and insights provide a rational framework for assessing and designing effective covalent inhibitors.cysteine oxidation | protein kinase | signaling | capture period | warhead interactions R eceptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR) tyrosine kinase, catalyze protein phosphorylation reactions to trigger signaling networks. Oncogenic activating mutations of EGFR lead to aberrant signaling for a subpopulation (10-30%) of nonsmall cell lung cancer patients (1). These mutations reside primarily in two regions of the EGFR catalytic domain [namely, the in-frame deletion mutations (e.g., Del746-750) preceding the N-terminal Cα-helix (exon 19) and the C-terminal activation loop L858R mutation (exon 21)] (2). Patients harboring these activating mutations usually respond to reversible ATP competitive drugs (e.g., erlotinib and gefitinib), but their effectiveness is limited by the emergence of drug resistance, in part, through an additional active site mutation (T790M and gatekeeper residue) in 50% of the responsive patients (3).A second generation of drug discovery dating back to the 1990s resulted in inhibitors that incorporate a chemically reactive Michael Acceptor (MA) electrophile (warhead) to target a cysteine nucleophile (EGFR-Cys 797 ) in the hinge region of the ATP binding cleft (4). The ...