Background
Cellular senescence is a key driver of decreased bone formation and osteoporosis. Leptin (LEP) has been implicated in cellular senescence and osteogenic differentiation. The aim of this study was to investigate the mechanisms by which LEP mediates cellular senescence and osteogenic differentiation.
Methods
C3H10T1/2 cells were treated with etoposide to induce cellular senescence, which was assessed by β-galactosidase staining. Quantitative real-time PCR and western blotting were used to measure the levels of senescence markers p21 and p16, as well as osteogenic differentiation-related genes ALP, COL1A1, and RUNX2. Alkaline phosphatase (ALP) staining and alizarin red S staining were performed to evaluate osteogenic differentiation. The NF-κB pathway and O-GlcNAcylation were assessed by western blotting.
Results
Etoposide treatment increased the number of senescent cells and the levels of p21 and p16, along with elevated LEP expression. These effects were reversed by LEP knockdown. Additionally, LEP knockdown increased ALP staining density and osteoblast mineralization nodules, as well as the mRNA and protein levels of ALP, COL1A1, and RUNX2, indicating that LEP knockdown promoted osteogenic differentiation in C3H10T1/2 cells. Mechanistically, LEP knockdown inactivated the NF-κB pathway by inhibiting the nuclear translocation of p65. Furthermore, OGT was found to promote O-GlcNAcylation of LEP at the S50 site.
Conclusion
Our findings demonstrated that O-GlcNAcylation of LEP inactivated the NF-κB pathway by reducing LEP protein levels, thereby inhibiting cellular senescence and promoting osteogenic differentiation in C3H10T1/2 cells. This study may provide a novel therapeutic target for the treatment of osteoporosis.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12860-024-00523-7.