Abstract. Simple climate models (SCMs) are frequently used in research and decision-making communities because of their flexibility, tractability, and low computational cost. SCMs can be idealized, flexibly representing major climate dynamics as impulse response functions, or process-based, using explicit equations to model possibly nonlinear climate and earth system dynamics. Each of these approaches has strengths and limitations. Here we present and test a hybrid impulse response modeling framework (HIRM) that combines the strengths of process-based SCMs in an idealized impulse response model, with HIRM’s input derived from the output of a process-based model. This structure allows it to capture the crucial nonlinear dynamics frequently encountered in going from greenhouse gas emissions to atmospheric concentration to radiative forcing to climate change. As a test, the HIRM framework was configured to emulate total temperature of the simple climate model Hector 2.0 under the four Representative Concentration Pathways and the temperature response of an abrupt four times CO2 concentration step. HIRM was able to reproduce near-term and long-term Hector global temperature with a high degree of fidelity. Additionally, we conducted two case studies to demonstrate potential applications for this hybrid model: examining the effect of aerosol forcing uncertainty on global temperature, and incorporating more process-based representations of black carbon into a SCM. The open-source HIRM framework has a range of applications including complex climate model emulation, uncertainty analyses of radiative forcing, attribution studies, and climate model development.