Purpose
To evaluate the utility of deep learning-based image reconstruction (DLIR) algorithm in unenhanced abdominal low-dose CT (LDCT).
Materials and methods
Two patient groups were included in this prospective study: 58 consecutive patients who underwent unenhanced abdominal standard-dose CT reconstructed with hybrid iterative reconstruction (SDCT group) and 48 consecutive patients who underwent unenhanced abdominal LDCT reconstructed with high strength level of DLIR (LDCT group). The background noise and signal-to-noise ratio (SNR) of the liver, pancreas, spleen, kidney, abdominal aorta, inferior vena cava, and portal vein were calculated. Two radiologists qualitatively assessed the overall image noise, overall image quality, and abdominal anatomical structures depiction. Quantitative and qualitative parameters and size-specific dose estimates (SSDE) were compared between SDCT and LDCT groups.
Results
The background noise was lower in LDCT group than in SDCT group (P = 0.02). SNRs were higher in LDCT group than in SDCT group (P < 0.001–0.004) except for the liver. Overall image noise was superior in LDCT group than in SDCT group (P < 0.001). Overall image quality was not different between SDCT and LDCT groups (P = 0.25–0.26). Depiction of almost all abdominal anatomical structures was equal to or better in LDCT group than in SDCT group (P < 0.001–0.88). The SSDE was lower in LDCT group (4.0 mGy) than in SDCT group (20.6 mGy) (P < 0.001).
Conclusions
DLIR facilitates substantial radiation dose reduction of > 75% and significantly reduces background noise. DLIR can maintain image quality and anatomical structure depiction in unenhanced abdominal LDCT.