UGT2B10 is a phase II drug metabolizing enzyme with limited information on its role in the metabolism of drugs, especially in the pediatric hematopoietic stem cell transplantation setting. Previously, we investigated UGT2B10's role through in silico analyses and prioritized acetaminophen (APAP), lorazepam (LOR), mycophenolic acid (MPA), and voriconazole N‐oxide (VCZ N‐oxide) for in vitro investigations. In this report, we present in vitro screening of these candidates and of voriconazole (VCZ) to assess their potential to be substrates and/or inhibitors of UGT2B10. Enzyme kinetics experiments included recombinant UGT2B10 and analytical methods based on ultra high‐performance liquid chromatography coupled to mass spectrometry (UHPLC–MS). To determine potential substrates, candidates were incubated at various therapeutically observed concentrations with recombinant UGT2B10 to identify the corresponding glucuronide metabolite. Inhibition capacity was tested using the selective probe cotinine for its glucuronidation to cotinine N‐ß‐d‐glucuronide. IC50 was determined for compounds exhibiting inhibition. Among the tested compounds, LOR (IC50 = 0.01 μM, R2 = 0.9257) and MPA (IC50 = 0.38 mM, R2 = 0.9212) exhibited inhibition potential for UGT2B10. None of the other tested compounds featured inhibition potential and none of the compounds tested exhibited metabolism through UGT2B10. Further exploration on the clinical relevance of this inhibition using modeling strategies, overlapping nature with other UGT isoforms, and screening other molecules for their inhibition potential on UGT2B10 is warranted.