Multiple lines of research suggest that ammonia is harmful to the brain if the levels remain elevated for extended periods of time. Several decades ago, there was no testing or standard of care to monitor the effect of hyperammonemia (HA) on neurological function in urea cycle disorders (UCD), and the timing of HA encephalopathy is still not clear. Magnetic resonance imaging (MRI) was not done routinely, if at all, so it was not known what changes were occurring in the brain, during and after recovery from HA. Decades ago, a diagnosis of a UCD meant severe disability and early death. Earlier diagnosis, improved management, and nitrogen scavenger therapy have improved the lives and life span of patients with UCD. However, many patients suffer from learning difficulties under the umbrella "executive function" which comprises neurologically based skills involving mental control and self-regulation. The general agreement of the core elements of executive functions includes inhibition, working memory, and cognitive flexibility and is necessary in development of skills in reasoning, fluid intelligence, problem-solving, and planning. Our research focuses on the use of noninvasive neuroimaging coupled with neuropsychological testing to understand the complex relationship between ammonia, glutamine, cognitive function, seizures, and specifically impact on development of working memory.