In recent years, a great effort has been devoted to developing a new generation of materials for aeronautic applications. The driving force behind this effort is the reduction of costs, by extending the service life of aircraft parts (structural and engine components) and increasing fuel efficiency, load capacity and flight range. The present paper examines the most important classes of metallic materials including Al alloys, Ti alloys, Mg alloys, steels, Ni superalloys and metal matrix composites (MMC), with the scope to provide an overview of recent advancements and to highlight current problems and perspectives related to metals for aeronautics.
Horizontal stabilizersLower Compression CYS, E, DT Upper Tension DT, YS As shown in Figure 2, engines consist of cold (fan, compressor and casing) and hot (combustion chamber and turbine) sections. The material choice depends on the working temperature. The components of cold sections require materials with high specific strength and corrosion resistance. Ti and Al alloys are very good for these applications. For instance, the working temperature of the compressor is in the range of 500-600 °C, and the Ti-6Al-2Sn-4Zr-6Mo alloy (YS = 640 MPa at 450 °C; excellent corrosion resistance) is the most commonly used material.For the hot sections, materials with good creep resistance, mechanical properties at high temperature and high-temperature corrosion resistance are required, and Ni-base superalloys are the optimal choice.