2022
DOI: 10.5194/egusphere-2022-1167
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Reduced order digital twin and latent data assimilation for global wildfire prediction

Abstract: Abstract. The occurrence of forest fires can impact vegetation in the ecosystem, property, and human health, but also indirectly affect the climate. JULES-INFERNO is a global land surface model, which simulates vegetation, soils, and fire occurrence driven by environmental factors. However, this model incurs substantial computational costs due to the high data dimensionality and the complexity of differential equations. Deep learning-based digital twins have an advantage in handling large amounts of data. They… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 34 publications
0
0
0
Order By: Relevance