Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Parameterization methods for two “commercial tire models—short wavelength intermediate frequency tire (SWIFT) model and flexible ring tire model—are developed around existing testing protocols. As an example, cleat tests are used for estimating belt mass and stiffness and enveloping tests are used for estimating belt bending and contact stiffness parameters in the respective tire models. This is the only way when commercial tire models are parameterized and used mainly by vehicle original equipment manufacturer companies. At present, tire suppliers are stepping up to supply commercial tire models as a part of virtual tire submissions and are virtually simulating standard testing protocols. It is envisioned that with a proper fundamental understanding of commercial tire model parameters and their modeling approaches to capture the respective tire dynamics, we can develop simple finite element (FE) techniques to estimate respective tire model parameters, thereby avoiding the simulation of cleat and other dynamic tests by using FE. With that motivation, previous work has already shown the estimation of belt mass and bending properties from FE part separation technique. In this work, with a fundamental understanding that the front cam and rear cam models in SWIFT are mathematically modeling the curvature of a loaded tire just outside of the footprint, we show that by fitting the tandem model to the loaded FE model deformed co-ordinates length, height, order of cam, and distance between the cams can be estimated easily. This simple loaded FE model-fitting technique is combined with other computationally simple FE static stiffness, footprint, and modal analyses to estimate other SWIFT parameters. Finally, SWIFT models from the above-mentioned FE techniques are developed for several tire designs and validated against enveloping and dynamic in-plane cleat test data. The variations in enveloping and other ride metrics from simulations are inline with testing data.
Parameterization methods for two “commercial tire models—short wavelength intermediate frequency tire (SWIFT) model and flexible ring tire model—are developed around existing testing protocols. As an example, cleat tests are used for estimating belt mass and stiffness and enveloping tests are used for estimating belt bending and contact stiffness parameters in the respective tire models. This is the only way when commercial tire models are parameterized and used mainly by vehicle original equipment manufacturer companies. At present, tire suppliers are stepping up to supply commercial tire models as a part of virtual tire submissions and are virtually simulating standard testing protocols. It is envisioned that with a proper fundamental understanding of commercial tire model parameters and their modeling approaches to capture the respective tire dynamics, we can develop simple finite element (FE) techniques to estimate respective tire model parameters, thereby avoiding the simulation of cleat and other dynamic tests by using FE. With that motivation, previous work has already shown the estimation of belt mass and bending properties from FE part separation technique. In this work, with a fundamental understanding that the front cam and rear cam models in SWIFT are mathematically modeling the curvature of a loaded tire just outside of the footprint, we show that by fitting the tandem model to the loaded FE model deformed co-ordinates length, height, order of cam, and distance between the cams can be estimated easily. This simple loaded FE model-fitting technique is combined with other computationally simple FE static stiffness, footprint, and modal analyses to estimate other SWIFT parameters. Finally, SWIFT models from the above-mentioned FE techniques are developed for several tire designs and validated against enveloping and dynamic in-plane cleat test data. The variations in enveloping and other ride metrics from simulations are inline with testing data.
The main goal of this work is to investigate if finite element (FE) model techniques with special applications of material properties accurately estimate the parameters of flexible ring tire models. It is known that commercially available ring tire models are used as standard tools for simulating and predicting vehicle ride and durability, e.g., rigid ring MF-Swift [1] and flexible ring Flexible Structure Tire Model (FTire) [2–5]. Despite wide acceptance of these models, difficulty in model parameterization limits their application in the vehicle development process. For estimation of tire dynamic stiffnesses and inertial properties, rolling tire cleat test data are required for most ring models. Although this test method produces reliable models, the parameterization is not time and cost effective as it requires measurement and processing of cleat data at multiple speeds and loads and is prone to test rig dynamic compliance variations. This approach also limits the ability to evaluate tire performances during the virtual stages of tire design. The objective of this work is to develop virtual data using time and cost effective FE-based methods towards the estimation of flexible ring model parameters rather than relying on measured cleat data on physical tires. Commercial product ABAQUS is used for the FE simulations and FTire for tire flexible ring model simulations. Two FE modeling techniques are utilized in this work. Firstly, it is shown that the dynamic stiffness of a rolling tire can be estimated from a steady state eigensolution modal analysis of a static tire using material properties characterized for a rolling tire. Secondly, a method of separation of the sidewall from the tread band is developed for the estimation of mass and bending properties of the tread band. The estimated stiffnesses, inertias, and dimensions from the FE model results are converted into FTire model parameters. Finally, to validate the virtually generated FTire model, simulated dynamic cleat data response trends at multiple inflation pressures and velocities are compared with measurements. The virtual FE based techniques presented in this work can be applied to other ring based models as well.
<div class="section abstract"><div class="htmlview paragraph">With the recent development in virtual modelling and vehicle simulation technology, many OEM’s worldwide are using digital road profiles in virtual environment for vehicle durability load prediction and virtual design evaluation. For precise simulation results, it is important to have the tire digital twin which is the realistic representation of tire in the virtual environment.</div><div class="htmlview paragraph">The study comprises of discussion about different types of tire models such as empirical, solid model, rigid ring model and flexural ring models such as Pacejka, MF Swift, CD tire, F tire etc. and also the complexity involved in development of these tire models.</div><div class="htmlview paragraph">Generation of virtual tire model requires highly sophisticated test rigs as well as vehicle level testing with Wheel Force transducers and other vehicle dynamics sensors. The large number of data points generated with testing are converted in standard TYDEX format to be further processed in various software tool for virtual model generation. Thus, a robust test routine based on laboratory and vehicle level tests to achieve different tire models such as F Tire, MF Tire etc. has been developed. The research paper also discusses the challenges, complexity in data pre and post processing to arrive at the tire characterization for tire digital twinning.</div><div class="htmlview paragraph">In this paper various technical aspects related to passenger car tires, its functions, available tire models, parameterization have been discussed. Additionally, case study has been explained on experience on generation of the digital twin model of tire with Cosin – Ftire software tool. In continuation with process different applications of the Tire models has been elaborated in brief. Tire model developed can be used for vehicle durability, ride & handling simulation, Autonomous driving and ADAS feature development for various OEM’s and tier 1 suppliers. Virtual tire model will aid in reducing the time and physical track testing efforts required in the tire development cycle</div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.