Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background The adoption of Robotic Pancreaticoduodenectomy (RPD) is increasing globally. Meanwhile, reduced-port RPD (RPRPD) remains uncommon, requiring robot-specific techniques not possible with laparoscopy. We introduce a unique RPRPD technique optimizing surgical field exposure. Methods Our RPRPD utilizes a single-site plus-two ports technique, facilitated by a single-port platform through a 5-cm incision. The configuration of robotic arms (arm1, arm2, arm3, and arm4) were strategically designed for optimal procedural efficiency, with the arms2 and arm3, alongside the assistant trocar, mounted on the single-port platform, while the arms1 and arm4 were positioned laterally across the abdomen. Drainage was established via channels created at the arm1 and arm4 insertion sites. A “gooseneck traction” was principally employed with the robotic instrument to prop up the specimen rather than grasp, improving the surgical field’s visibility and access. Clinical outcomes of patients who underwent RPRPD performed between August 2020 and September 2023 by a single surgeon across two centers in Taiwan and Japan were reviewed. Results Fifty patients underwent RPRPD using the single-site plus-two ports technique. The gooseneck traction technique enabled goodsurgical field deployment and allowed for unrestricted movement of robotic arms with no collisions with the assistant instruments. The median operative time was 351 min (250–488 min), including 271 min (219–422 min) of console time and three minutes (2–10 min) of docking time. The median estimated blood loss was 80 mL (1–872 mL). All RPRPD procedures were successfully performed without the need for conversion to open surgery. Postoperative major morbidity (i.e., Clavien-Dindo grade ≥ IIIa) was observed in 6 (12%) patients and median postoperative hospital stay was 13 days. Conclusions The single-site plus-two ports RPRPD with the gooseneck traction proves to be a safe, feasible option, facilitating surgical field visibility and robotic arm maneuverability. Graphical Abstract
Background The adoption of Robotic Pancreaticoduodenectomy (RPD) is increasing globally. Meanwhile, reduced-port RPD (RPRPD) remains uncommon, requiring robot-specific techniques not possible with laparoscopy. We introduce a unique RPRPD technique optimizing surgical field exposure. Methods Our RPRPD utilizes a single-site plus-two ports technique, facilitated by a single-port platform through a 5-cm incision. The configuration of robotic arms (arm1, arm2, arm3, and arm4) were strategically designed for optimal procedural efficiency, with the arms2 and arm3, alongside the assistant trocar, mounted on the single-port platform, while the arms1 and arm4 were positioned laterally across the abdomen. Drainage was established via channels created at the arm1 and arm4 insertion sites. A “gooseneck traction” was principally employed with the robotic instrument to prop up the specimen rather than grasp, improving the surgical field’s visibility and access. Clinical outcomes of patients who underwent RPRPD performed between August 2020 and September 2023 by a single surgeon across two centers in Taiwan and Japan were reviewed. Results Fifty patients underwent RPRPD using the single-site plus-two ports technique. The gooseneck traction technique enabled goodsurgical field deployment and allowed for unrestricted movement of robotic arms with no collisions with the assistant instruments. The median operative time was 351 min (250–488 min), including 271 min (219–422 min) of console time and three minutes (2–10 min) of docking time. The median estimated blood loss was 80 mL (1–872 mL). All RPRPD procedures were successfully performed without the need for conversion to open surgery. Postoperative major morbidity (i.e., Clavien-Dindo grade ≥ IIIa) was observed in 6 (12%) patients and median postoperative hospital stay was 13 days. Conclusions The single-site plus-two ports RPRPD with the gooseneck traction proves to be a safe, feasible option, facilitating surgical field visibility and robotic arm maneuverability. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.