Environmental arsenic exposure in adults and children has been associated with a reduction in the expression of club cell secretory protein (CC16) and an increase in the expression of matrix metalloproteinase-9 (MMP-9), both biomarkers of lung inflammation and negative respiratory outcomes. The objectives of this study were to determine if the levels of serum CC16 and MMP-9 and subsequent respiratory infections in children are associated with the ingestion of arsenic by drinking water. This cross-sectional study included 216 children from three Yaqui villages, Potam, Vicam, and Cocorit, with levels of arsenic in their ground water of 70.01 ± 21.85, 23.3 ± 9.99, and 11.8 ± 4.42 μg/L respectively. Total arsenic in water and urine samples was determined by inductively coupled plasma/optical emission spectrometry. Serum was analyzed for CC16 and MMP-9 using ELISA. The children had an average urinary arsenic of 79.39 μg/L and 46.8 % had levels above of the national concern value of 50 μg/L. Increased arsenic concentrations in drinking water and average daily arsenic intake by water were associated with decreased serum CC16 levels (β = − 0.12, 95% CI − 0.20, − 0.04 and β = − 0.10, 95% CI − 0.18, − 0.03), and increased serum MMP-9 levels (β = 0.35, 95% CI 0.22, 0.48 and β = 0.29, 95% CI 0.18, 0.40) at significant levels (
P
< 0.05). However, no association was found between levels of these serum biomarkers and urinary arsenic concentrations. In these children, reduced serum CC16 levels were significantly associated with increased risk of respiratory infections (OR = 0.34, 95% CI 0.13, 0.90). In conclusion, altered levels of serum CC16 and MMP-9 in the children may be due to the toxic effects of arsenic exposure through drinking water.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11356-021-13070-x.