Generating day-of-operation probabilistic capacity scenarios from weather forecasts Airport arrival capacity, referred to here as the airport acceptance rate (AAR), is strongly influenced by the weather in the vicinity of the airport and thus AAR prediction necessitates an airport-specific weather forecast. Weather forecasts, however, are seldom accurate in predicting the actual weather conditions. Strategic decisions, for example arrival rates in a ground delay program (GDP), must be made ahead of time, usually more than two hours, when there is an uncertainty about the future capacity. This research uses probabilistic capacity scenarios to represent the uncertainty in the future arrival capacity. A probabilistic capacity scenario is defined as a time series of AAR values with which a certain probability of realization is associated. A set of probabilistic capacity scenarios may be used to represent the uncertainty in arrival capacity at an airport over the course of the day.There has been considerable research in developing GDP models that determine efficient ground delay decisions and require probabilistic capacity scenarios as inputs. It is assumed that the capacity scenarios can be developed from weather forecasts or can be obtained from the expertise of the air traffic managers. There is, however, considerably less literature on the development of specific day-of-operation probabilistic capacity scenarios from weather forecasts. This limits the use of these GDP models in real-world application. This thesis fills that gap and presents methodologies to generate probabilistic capacity scenarios from weather forecasts.In this thesis we develop methodologies for generating probabilistic capacity scenarios using a widely available airport-specific weather forecast called the Terminal Aerodrome Forecast (TAF). These methodologies require the issued TAF forecast and the realized capacity for days in the past. We apply and assess the performance of these methodologies on four US airports: San Francisco International Airport, Boston Logan International Airport, Chicago O'Hare International Airport and Los Angeles International Airports. Though we have focused on these airports as case studies, the TAF-based scenario generation techniques can be applied to any airport.In the first methodology, TAF Clustering, the scenarios are representative capacity profiles for days having similar TAFs. Groups of similar TAFs are found using K-means clustering and the 2 number is verified using Silhouette value. In the second methodology, Dynamic Time Warping (DTW) Scenarios, the scenarios are the actual realized capacity profiles for days that have similar TAFs. The similarity between TAFs is determined using a statistical technique for comparing multidimensional time series called DTW. DTW Scenarios uses three airport specific input parameters. These parameters control the numbers and the probabilities of the scenarios. We determine the values of the parameters through optimization to maximize the performance of the scena...