2022
DOI: 10.1287/ijoc.2022.1183
|View full text |Cite
|
Sign up to set email alerts
|

Reducing and Calibrating for Input Model Bias in Computer Simulation

Abstract: Input model bias is the bias found in the output performance measures of a simulation model caused by estimating the input distributions/processes used to drive it. When the simulation response is a nonlinear function of its inputs, as is usually the case when simulating complex systems, input modelling bias is amongst the errors that arise. In this paper, we introduce a method that recalibrates the input parameters of parametric input models to reduce the bias in the simulation output. The proposed method is … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 17 publications
0
0
0
Order By: Relevance