We show that most Salmonella typhimurium mutants resistant to streptomycin, rifampicin, and nalidixic acid are avirulent in mice. Of seven resistant mutants examined, six were avirulent and one was similar to the wild type in competition experiments in mice. The avirulent-resistant mutants rapidly accumulated various types of compensatory mutations that restored virulence without concomitant loss of resistance. Such second-site compensatory mutations were more common then reversion to the sensitive wild type. We infer from these results that a reduction in the use of antibiotics might not result in the disappearance of the resistant bacteria already present in human and environmental reservoirs. Thus, second-site compensatory mutations could increase the fitness of resistant bacteria and allow them to persist and compete successfully with sensitive strains even in an antibiotic-free environment.During the last decade there has been an alarming increase in the appearance of antibiotic-resistant bacteria as a result of an increased use of antibiotics combined with the exceptional ability of bacteria to develop resistance. One strategy to reverse this development is to decrease the use of antibiotics to promote the disappearance of the resistant bacteria present in human and environmental reservoirs. Implicit in this reasoning is that resistance confers a cost on the bacteria, which results in a counter-selection against resistant strains in an antibiotic-free environment. An associated question and potential problem is whether the supposedly less fit, avirulentresistant bacteria might accumulate compensatory mutations that restore fitness and virulence without loss of resistance, and thereby stabilize the resistant population.In spite of the importance of these questions, there are few experiments that explicitly address them under the relevant conditions, i.e., in animal model systems using genetically defined bacterial strains (for a review, see ref. 1). For example, it has been shown in Escherichia coli that carriage of resistance genes on a plasmid is associated with a decreased growth rate, and that these strains can accumulate chromosomal compensatory mutations that, by an unknown mechanism, compensate for the growth rate decrease (2, 3). Likewise, it has been shown that slow-growing streptomycin-resistant mutants of E. coli can accumulate compensatory mutations that restore rapid growth under laboratory conditions without affecting the resistance (4). Interestingly, these compensatory mutations appear to create a genetic background in which the streptomycinsensitive revertants have a strong selective disadvantage, implying that it would be difficult for an evolved resistant strain to become sensitive even in the absence of the antibiotic (5). There are also animal data which indicate that tetracyclineresistant E. coli persist in pigs long after the antibiotic has been removed, suggesting that the added burden of this particular resistance in vivo is in fact small (6). Finally, studies of human clini...