Reducing Lithium‐Diffusion Barrier on the Wadsley–Roth Crystallographic Shear Plane via Low‐Valent Cation Doping for Ultrahigh Power Lithium‐Ion Batteries
Jun Ma,
Yu Xiang,
Jingyue Xu
et al.
Abstract:Rapid‐charging niobium–tungsten oxide Nb14W3O44 (NbWO) anodes with a Wadsley–Roth crystallographic shear (WRCS) structure possess 3D interconnected open tunnels. However, the anisotropic Li+ diffusion paths lead to a high lithium‐diffusion barrier of hooping between window sites across edge‐shared octahedrons, as the rate‐limiting step of hooping. To improve the rate capability of NbWO, doping it with low‐valent cations (with valences lower than W6+) to reduce the high lithium‐diffusion barrier is proposed. El… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.