2015
DOI: 10.1120/jacmp.v16i2.5165
|View full text |Cite|
|
Sign up to set email alerts
|

Reducing motion artifacts in 4D MR images using principal component analysis (PCA) combined with linear polynomial fitting model

Abstract: We have previously developed a retrospective 4D‐MRI technique using body area as the respiratory surrogate, but generally, the reconstructed 4D MR images suffer from severe or mild artifacts mainly caused by irregular motion during image acquisition. Those image artifacts may potentially affect the accuracy of tumor target delineation or the shape representation of surrounding nontarget tissues and organs. So the purpose of this study is to propose an approach employing principal component analysis (PCA), comb… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2018
2018
2018
2018

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 34 publications
0
0
0
Order By: Relevance