Limitations of existing thrombolytic therapies for acute ischemic stroke have motivated the development of catheter-based approaches that utilize no or low doses of thrombolytic drugs combined with a mechanical action to either dissolve or extract the thrombus. Sonothrombolysis accelerates thrombus dissolution via the application of ultrasound combined with microbubble contrast agents and low doses of thrombolytics to mechanically disrupt the fibrin mesh. In this work, we studied the efficacy of catheter-directed sonothrombolysis in a rat model of ischemic stroke. Microbubbles of 10-20 μm diameter with a nitrogen gas core and a non-crosslinked albumin shell were produced by a flow-focusing microfluidic device in real time. The microbubbles were dispensed from a catheter located in the internal carotid artery for direct delivery to the thrombus-occluded middle cerebral artery, while ultrasound was administered through the skull and recombinant tissue plasminogen activator (rtPA) was infused via a tail vein catheter. The results of this study demonstrate that flow focusing microfluidic devices can be miniaturized to dimensions compatible with human catheterization and that large-diameter microbubbles comprised of high solubility gases can be safely administered intraarterially to deliver a sonothrombolytic therapy. Further, sonothrombolysis using intraarterial delivery of large microbubbles reduced cerebral infarct volumes by approximately 50% versus no therapy, significantly improved functional neurological outcomes at 24 hrs, and permitted rtPA dose reduction of 3.3 (95% C.I. 1.8-3.8) fold when compared to therapy with intravenous rtPA alone. Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aamterms-v1 Author Contributions Statement AJD, JAH, ZZ conceived of study. AJD wrote main manuscript text. AJD, JMRR, JL conducted experiments and analyzed data. JAH, ALK, and ZZ supervised the study and all authors reviewed the manuscript.