Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Precipitation and deposition of paraffin wax and hydrates is a major concern for hydrocarbon transport in pipelines, tiebacks, and other production tubing in cold environments. Traditionally, chemical, mechanical, and thermal methods are used to mitigate the deposition at the expense of production interruption, complex maintenance, costs, and environmental hazards. This paper studies the potential of nanopaint-aided electromagnetic pigging. This process has potentially low production impact, simple maintenance, low energy cost, and no chemical expense or hazards. The electromagnetic pig contains an induction coil that emits an alternating magnetic field. The alternating magnetic field induces heat in the nanopaint coating (i.e. coating with embedded paramagnetic nanoparticles) on the pipeline's inner wall and in the pipeline wall itself. The heat then melts and peels off the wax and hydrates adhering to the pipeline, allowing the hydrocarbon to carry them away. We analyze the heating effectiveness and efficiency of electromagnetic pigging. The heating effectiveness is measured by the maximum pigging speed that allows deposit removal. The heating efficiency is measured by the ratio of the heat received by the wax over the total emitted electromagnetic energy, which we define as the pig induction factor. Based on our numerical model, we compare the pig induction factor for different coil designs, different hydrocarbon flow rates, and different pig traveling speeds. We find that slower pig speed generally improves the pigging performance, that shorter solenoids with larger radius have higher efficiency, and that the oil flow does not considerably affect the process. We re-evaluate the maximum pig speed defined by the static pig model and confirm that a solenoid with larger radius allows higher pig speed. We investigate the potential of a novel, low-maintenance electromagnetic pigging method that poses minimal interruption to production. This investigation is a basis for a new technology that stems from initial experimental investigation done by our collaborators. We here provide parameters for pig design and pigging protocol optimization, and will put them in practice in our future lab experiments.
Precipitation and deposition of paraffin wax and hydrates is a major concern for hydrocarbon transport in pipelines, tiebacks, and other production tubing in cold environments. Traditionally, chemical, mechanical, and thermal methods are used to mitigate the deposition at the expense of production interruption, complex maintenance, costs, and environmental hazards. This paper studies the potential of nanopaint-aided electromagnetic pigging. This process has potentially low production impact, simple maintenance, low energy cost, and no chemical expense or hazards. The electromagnetic pig contains an induction coil that emits an alternating magnetic field. The alternating magnetic field induces heat in the nanopaint coating (i.e. coating with embedded paramagnetic nanoparticles) on the pipeline's inner wall and in the pipeline wall itself. The heat then melts and peels off the wax and hydrates adhering to the pipeline, allowing the hydrocarbon to carry them away. We analyze the heating effectiveness and efficiency of electromagnetic pigging. The heating effectiveness is measured by the maximum pigging speed that allows deposit removal. The heating efficiency is measured by the ratio of the heat received by the wax over the total emitted electromagnetic energy, which we define as the pig induction factor. Based on our numerical model, we compare the pig induction factor for different coil designs, different hydrocarbon flow rates, and different pig traveling speeds. We find that slower pig speed generally improves the pigging performance, that shorter solenoids with larger radius have higher efficiency, and that the oil flow does not considerably affect the process. We re-evaluate the maximum pig speed defined by the static pig model and confirm that a solenoid with larger radius allows higher pig speed. We investigate the potential of a novel, low-maintenance electromagnetic pigging method that poses minimal interruption to production. This investigation is a basis for a new technology that stems from initial experimental investigation done by our collaborators. We here provide parameters for pig design and pigging protocol optimization, and will put them in practice in our future lab experiments.
Summary Wax and hydrates deposition is a major concern for hydrocarbon transport in pipelines, production tubing, and other pipes in cold environments. Traditionally, chemical, mechanical, and thermal methods are used to mitigate the deposition at the expense of production interruption, complex maintenance, costs, and environmental hazards, and many of these methods are not feasible in deep water environments. This paper studies the potential of nanopaint-aided electromagnetic pigging. This process has potentially low production impact, simple maintenance, low energy cost, and no chemical expense or hazards. The electromagnetic pig contains an induction coil that emits an alternating magnetic field. The alternating magnetic field induces heat in the nanopaint coating (i.e., coating with embedded paramagnetic nanoparticles) on the pipeline’s inner wall and in the pipeline wall itself. The heat then melts and peels off the wax and hydrates adhering to the pipeline, allowing the hydrocarbon to carry them away. Without loss of generality, we focus on wax remediation in this paper. We analyze the heating effectiveness and efficiency of electromagnetic pigging. The heating effectiveness is measured by the maximum pigging speed that allows deposit removal. The heating efficiency is measured by the ratio of the heat received by the wax over the total emitted electromagnetic energy, which we define as the pig induction factor (PIF). An axisymmetric transient model is built to study the heat transfer without considering phase change. Based on our numerical model, we compare the PIF for different coil designs, different hydrocarbon flow rates, and different pig traveling speeds. We reevaluate the maximum pig speed defined by the static pig model from our previous work and found the electromagnetic pigging system is much more effective than previously estimated, while we confirm that a solenoid with larger radius allows higher pig speed. We find that faster pig speed generally improves the efficiency but decreases effectiveness and that shorter solenoids with larger radius have higher efficiency. The hydrocarbon flow rate does not impact the heating process if the wax is thicker than the threshold wax thickness. Based on the simulation results, the field application is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.