Recently, there has been an increase in industrial and academic research on data-driven analytics with smartphones based on the collection of app usage patterns and surrounding context data. The Android mobile operating system utilizes Usage Statistics API (US API) and Accessibility Service API (AS API) as representative APIs to passively collect app usage data. These APIs are used for various research purposes as they can collect app usage patterns (e.g., app status, usage time, app name, user interaction state, and smartphone use state) and fine-grained data (e.g., user interface elements & hierarchy and user interaction type & target & time) of each application. In addition, other sensing APIs help to collect the user's surroundings context (location, network, ambient environment) and device state data, along with AS/US API. In this review, we provide insights on the types of mobile usage and sensor data that can be collected for each research purpose by considering Android built-in APIs and sensors (AS/US API, and other sensing APIs). Moreover, we classify the research purposes of the surveyed papers into four categories and 17 sub-categories, and create a hierarchical structure for data classification, comprising three layers. We present the important trends in the usage of Android's built-in APIs and sensors, including AS/US API, the types of data collected using the presented APIs, and discuss the utilization of mobile usage and sensor data in future research.