Wildfire activity across the western United States has increased in recent decades, with wildfires burning at a higher severity and larger scale. The effect of wildfires on forest structure and wildlife habitat is largely influenced by wildfire severity; however, few studies have evaluated the effects of wildfire severity on resource selection of ungulates, particularly during hunting seasons, when knowledge of resource selection is essential for making informed management decisions. To fill this knowledge gap, we fit resource selection probability functions for female elk (Cervus canadensis) in years 2 and 3 post‐wildfire to evaluate the effects of wildfire severity and other environmental and anthropogenic factors on elk resource selection during 4 autumn periods with varying levels of hunter pressure (prehunt, archery‐only, backcountry rifle, and rifle). The probability of female elk selecting low‐severity burned forests during the prehunt, archery‐only, backcountry rifle, and rifle periods was 0.99 (95% credible interval [CrI] = 0.98–1.00), 0.99 (CrI = 0.97–1.00), 0.99 (CrI = 0.99–1.00), and 0.0010 (CrI = 0.00067–0.0015]), respectively, and did not strongly differ from the probability of selecting high‐severity burned forests. During the prehunt period, elk also selected areas with greater forage quality and areas farther from open roads. Elk selected similar resources during the archery period, and selected areas with higher hunter pressure. Elk started leaving hunting districts that had higher snowpack (i.e., snow water equivalent; β = −0.84, CrI = −0.96–−0.72) and allowed rifle hunting (β = −5.39, CrI = −5.80–−4.97) but still selected areas with higher hunter pressure (β = 0.92, CrI = 0.78–1.07) during the backcountry rifle period. During the rifle period, elk continued avoiding areas with high snowpack (β = −3.96, CrI = −4.22–−3.71) and started selecting areas with lower hunter pressure (β = −1.71, CrI = −1.79–−1.64) and lower canopy cover. Overall, wildfire affected elk distributions in early autumn 2 and 3 years after fire in our study area, with limited differences in resource selection between wildfire severity categories. By late autumn, hunter pressure and snowpack were the primary factors influencing elk distribution, and wildfire had little influence on selection. When estimating wildfire effects on elk movements during autumn and establishing appropriate hunting regulations, managers should consider the hunting season, hunter pressure, timing and amount of snowpack, location of traditional winter range, and the seasonal elk range burned, as all these factors may contribute to how elk use the landscape in autumn.