Graphical Abstract Highlights d SoNar serves as a unique tool for in vitro/in vivo studies of stem cell metabolisms d SoNar-high cells prefer glycolysis and are enriched for leukemia-initiating cells d Leukemia-initiating cells home to endosteal niches and prefer symmetric divisions d PDK2 sustains metabolic and leukemogenic activities of leukemia-initiating cells In Brief Hao et al. reveal that a genetically encoded metabolic sensor, SoNar, precisely monitors the metabolic status of leukemia-initiating cells (LICs) both in vitro and in vivo. LICs prefer homing to endosteal niches and symmetric divisions to maintain their leukemogenic activities. PDK2 fine-tunes the glycolysis and cell-fate determinations of LICs. Hao et al., 2019, Cell Metabolism 29, 950-965 April 2, 2019 ª 2018 Elsevier Inc.
SUMMARYThe metabolic properties of leukemia-initiating cells (LICs) in distinct bone marrow niches and their relationships to cell-fate determinations remain largely unknown. Using a metabolic imaging system with a highly responsive genetically encoded metabolic sensor, SoNar, we reveal that SoNar-high cells are more glycolytic, enriched for higher LIC frequency, and develop leukemia much faster than SoNar-low counterparts in an MLL-AF9-induced murine acute myeloid leukemia model. SoNar-high cells mainly home to and locate in the hypoxic endosteal niche and maintain their activities through efficient symmetric division. SoNar can indicate the dynamics of metabolic changes of LICs in the endosteal niche. SoNar-high human leukemia cells or primary samples have enhanced clonogenic capacities in vitro or leukemogenesis in vivo. PDK2 fine-tunes glycolysis, homing, and symmetric division of LICs. These findings provide a unique angle for the study of metabolisms in stem cells, and may lead to development of novel strategies for cancer treatment.