2018
DOI: 10.3390/rs10040637
|View full text |Cite
|
Sign up to set email alerts
|

Reducing Uncertainty in Mapping of Mangrove Aboveground Biomass Using Airborne Discrete Return Lidar Data

Abstract: Remote sensing techniques offer useful tools for estimating forest biomass to large extent, thereby contributing to the monitoring of land use and landcover dynamics and the effectiveness of environmental policies. The main goal of this study was to investigate the potential use of discrete return light detection and ranging (lidar) data to produce accurate aboveground biomass (AGB) maps of mangrove forests. AGB was estimated in 34 small plots scatted over a 50 km 2 mangrove forest in Rio de Janeiro, Brazil. P… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
14
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 25 publications
(18 citation statements)
references
References 66 publications
1
14
0
3
Order By: Relevance
“…In fact, the finding of correlation analysis that variables significantly correlated with vegetation biomass varies largely with vegetation type implies that type-specific biomass estimations models should be constructed. Similarly, non-species-specific allometric growth models yielded larger errors than species-specific ones [69]. Urban vegetation cannot be regarded as a single vegetation type as it varies largely in biophysical characteristics and thus biomass.…”
Section: Discussionmentioning
confidence: 97%
“…In fact, the finding of correlation analysis that variables significantly correlated with vegetation biomass varies largely with vegetation type implies that type-specific biomass estimations models should be constructed. Similarly, non-species-specific allometric growth models yielded larger errors than species-specific ones [69]. Urban vegetation cannot be regarded as a single vegetation type as it varies largely in biophysical characteristics and thus biomass.…”
Section: Discussionmentioning
confidence: 97%
“…PLS is based on linear transitions from several original variables to relatively few orthogonal factors or latent variables. It is useful for establishing predictive models when the predictor variables are collinear [52]. As metrics extracted from GLAS may be collinear, a PLS model was developed.…”
Section: Biomass Modeling Methodsmentioning
confidence: 99%
“…Los resultados de este estudio son consistentes con otros de estimación de biomasa aérea en bosques tropicales. Cada una de estas métricas (P80, P90 y P95) se combinan con otras métricas de densidad o estadísticas de la distribución de altura para conformar los modelos generados por Clark et al (2011) en Costa Rica, en manglares de Brasil (Rocha de Souza et al, 2018), así como en bosques templados (Lefsky et al, 2002). Los percentiles P80 y P90 (9.6 m -10.6 m) corresponden al patrón de altura promedio para este tipo de vegetación.…”
Section: Discussionunclassified
“…Por otro lado, en los dos tipos de selva estudiados, el percentil 95 y la altura media, además de dos métricas relacionadas a la cobertura del dosel (el porcentaje de los primeros retornos encima de 2 m y el porcentaje de los primeros retornos encima de la altura media) contribuyeron significativamente a predecir la biomasa mediante modelos de regresión lineal. La idea principal de usar dos métricas en cada modelo fue crear una relación simple que involucre la distribución de altura y la profundidad en que los retornos LiDAR penetran el arbolado, como lo señalan Rocha de Souza et al (2018), además, es importante señalar que la adición de más variables en los modelos no incrementó significativamente la variación explicada.…”
Section: Discussionunclassified
See 1 more Smart Citation