PurposeIn recent years, the demand for garments has significantly increased, requiring manufacturers to speed up their production to attract customers. Cut order planning (COP) is one of the most important processes in the apparel manufacturing industry. The appropriate stencil arrangement can reduce costs and fabric waste. The COP problem focuses on determining the size combination for a pattern, which is determined by the length of the cutting table, width, demand order, and height of the cutting equipment.Design/methodology/approachThis study proposes new heuristics: genetic algorithm (GA), symbiotic organism search, and divide-and-search-based Lite heuristic and a One-by-One (ObO) heuristic to address the COP problem. The objective of the COP problem is to determine the optimal combination of stencils to meet demand requirements and minimize the total fabric length.FindingsA comparison between our proposed heuristics and other simulated annealing and GA-based heuristics, and a hybrid approach (conventional algorithm + GA) was conducted to demonstrate the effectiveness and efficiency of the proposed heuristics. The test results show that the ObO heuristic can significantly improve the solution efficiency and find the near optimal solution for extreme demands.Originality/valueThis paper proposes a new heuristic, the One-by-One (ObO) heuristic, to solve the COP problem. The results show that the proposed approaches overcome the long operation time required to determine the fitting arrangement of stencils. In particular, our proposed ObO heuristic can significantly improve the solution efficiency, i.e. finding the near optimal solution for extreme demands within a very short time.