Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the past, accessing laterals after a multipacker completion system installation in a multilateral well presented significant risks to drilling operations because certain crucial operations, such as acid stimulation, required a rig on location. Recently, a Middle East operator successfully installed an isolated multilateral completion system. The system was deployed in a well located in an onshore field in the Arabian Gulf region. The isolated multilateral system was customized for multilateral wells that require re-entry capability to access the lateral. The system provided a completion window equipped with landing profiles and sealbores that enable deflector settings for lateral access or isolation sleeves for lateral control. Additionally, a unique latch coupling allowed for installation at the optimum azimuth and depth of the system for lateral re-entry operations. Historically, in installations that required access to the lateral, a pilot hole had to be drilled and subsequently plugged and abandoned to avoid running a dual-packer completion, followed by running a single packer as an alternative to enable safe stimulation of the lateral. Using the new multilateral isolation system enabled the first combined observation and producer well with a dual-packer completion string. The well represented a technical milestone for the service company in the development of multiple reservoir fields. Using the isolated multilateral completion system allowed the operator to achieve the following results: Maintain accessibility to the observation bore for future monitoring and producing from the other laterals. Improve surface infrastructure by reducing the number of wells to be drilled. Save on drilling and completion costs with individual observation wells. Achieve accessibility through the completion on either lateral independently. Perform acid stimulation treatments using a rigless unit at any point during the life of the well through a multipacker completion. Risk reduction with drilling rigs because critical operations, such as acid stimulation and well testing, can be satisfactorily performed using a rigless unit instead of a rig on location. The identification of further benefits and lessons learned will be addressed in future work. In conclusion, the Middle East operator had achieved success in the deployment of newly acquired technology for the multilateral/single-bore completion with multipacker systems.
In the past, accessing laterals after a multipacker completion system installation in a multilateral well presented significant risks to drilling operations because certain crucial operations, such as acid stimulation, required a rig on location. Recently, a Middle East operator successfully installed an isolated multilateral completion system. The system was deployed in a well located in an onshore field in the Arabian Gulf region. The isolated multilateral system was customized for multilateral wells that require re-entry capability to access the lateral. The system provided a completion window equipped with landing profiles and sealbores that enable deflector settings for lateral access or isolation sleeves for lateral control. Additionally, a unique latch coupling allowed for installation at the optimum azimuth and depth of the system for lateral re-entry operations. Historically, in installations that required access to the lateral, a pilot hole had to be drilled and subsequently plugged and abandoned to avoid running a dual-packer completion, followed by running a single packer as an alternative to enable safe stimulation of the lateral. Using the new multilateral isolation system enabled the first combined observation and producer well with a dual-packer completion string. The well represented a technical milestone for the service company in the development of multiple reservoir fields. Using the isolated multilateral completion system allowed the operator to achieve the following results: Maintain accessibility to the observation bore for future monitoring and producing from the other laterals. Improve surface infrastructure by reducing the number of wells to be drilled. Save on drilling and completion costs with individual observation wells. Achieve accessibility through the completion on either lateral independently. Perform acid stimulation treatments using a rigless unit at any point during the life of the well through a multipacker completion. Risk reduction with drilling rigs because critical operations, such as acid stimulation and well testing, can be satisfactorily performed using a rigless unit instead of a rig on location. The identification of further benefits and lessons learned will be addressed in future work. In conclusion, the Middle East operator had achieved success in the deployment of newly acquired technology for the multilateral/single-bore completion with multipacker systems.
Multilateral wells have been proven over decades and have developed into a reliable and cost effective approach to mature field rejuvenation and extended commercial viability. This paper will discuss case studies demonstrating a number of techniques used to create infill multilateral wells in existing fields with a high level of reliability and repeatability. Techniques reviewed will cover cutting and pulling production casing to drill and case a new mainbore versus sidetracking and adding laterals to an existing mainbore. Discussion will also cover completion designs that tie new laterals into existing production casing providing significantly greater reservoir contact. Temporary isolation of high water-cut laterals brought into production later in the well's life through bespoke completion designs will also be discussed. Case studies will include discussion of workover operations, isolation methods, and lateral creation systems. Where available, resulting field performance improvements will also be discussed. In Norway, slot recoveries are commonly performed by cutting and pulling the 10-3/4" casing, redrilling a new mainbore, and running new casing. This enables junction placement closer to unswept zones and easier lateral drilling to targets. It does have drawbacks, however, related to the additional time required to pull the subsea xmas tree and challenges associated with pulling casing. In 2019, Norway successfully completed a 10-3/4" retrofit installation, whereas a sidetrack was made from the 10-3/4" and an 8-5/8" expandable liner was run down into the reservoir pay zone where two new laterals were created. The 8-5/8" liner saved time otherwise spent having to drill the section down to the payzone from the laterals. These wells have a TAML Level 5 isolated junction, Autonomous Inflow Control Devices (AICDs) in each lateral, and an intelligent completion interface across the junction, enabling active flow management and monitoring of both branches. In Asia, infill laterals were added to existing wellbores by sidetracking 9-5/8" casing and tying production back to the original mainbore. These dual laterals were completed with intelligent completions to enable lateral flow management and monitoring of both laterals. In Australia, dual laterals were created in a similar fashion; laterals are added to existing wells; however, a novel approach was used to manage water from existing lower mainbore laterals whereby they are shut in at completion and opened later when the new lateral is watered out. The older lateral now produces at lower water cut given the time allowed for water coning in the lateral to relax. Using this practice, production is alternated back and forth between the two laterals. In the Middle East, an older well has been converted from TAML Level 4 to Level 5 in order to prevent detected gas migrating into the mainbore at the junction. This conversion of a cemented junction well has enabled production to resume on this well. The well was converted to incorporate an intelligent completion to enable flow control of each lateral. This paper intends to provide insights into the various mature field re-entry methods for multilateral well construction, and a review of the current technology capabilities and well designs through the review of multiple case histories.
The drilling and completion of multilateral wells continues to expand and advance within the oil industry after three decades of accelerating adoption. The performance of these wells can be increased when integrated with advanced well completion techniques. The addition of intelligent completions (IC) and inflow control devices (ICD/AICD) enhances well performance and improves field recovery. This paper discusses a reservoir simulation case study that evaluates the productive impact these technologies provide when combined with multilateral technology (MLT), and the mechanism by which they achieve it. A reservoir model is devised and simulates under dynamic reservoir conditions the field production of dual lateral and single bore horizontal wells. The simulation is conducted for three separate scenarios where AICD and IC are incrementally implemented. The results are compared across the scenarios and their value quantified. The mechanisms by which estimated ultimate recovery (EUR) is increased will be discussed, including the increase of reservoir contact, drawdown distribution optimization, and the control and delay of water production. The study will provide an overview on the theory behind the technologies. It will also review the workflow used to conduct the study, utilizing a combination of steady state nodal analysis software and dynamic reservoir simulation software. Additional information about the reservoir model, initial and boundary conditions are detailed, to provide insight into reservoir simulation methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.