2005
DOI: 10.1002/cjs.5550330202
|View full text |Cite
|
Sign up to set email alerts
|

Réduction de la variance dans les sondages en présence d'information auxiliarie: Une approache non paramétrique par splines de régression

Abstract: &I. 33, No. 2,2005, Pages 163-180 La revue canadiennede sratisrique 1 63 Reduction de la variance dans les sondages en presence d'information auxiliaire : une approche non parametrique par splines de regression Camelia GOGA MSC 2000: Primary 62D05; secondary 62608.Rkssumt : L'auteure traite de la prise en compte par un modtle non param6trique de I'infonnation auxiliaire dans le but d'am6liorer I'estimateur d'un total. Elle introduit un nouveau type d'estimateur assist6 par un modkle fond6 sur les splines de r6… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
24
0

Year Published

2009
2009
2022
2022

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 22 publications
(24 citation statements)
references
References 18 publications
0
24
0
Order By: Relevance
“…One way of guarding against model failure is to use non-parametric regression which does not require a predefined parametric mathematical expression for f . Breidt and Opsomer (2000) proposed local linear estimators and Breidt et al (2005) and Goga (2005) used non-parametric spline regression. The unknown f function is approximated by the projection of the population vector y U = .y k / k∈U onto different basis functions, such as the basis of truncated qth-degree polynomials in Breidt et al (2005) and the B-spline basis in Goga (2005).…”
Section: Non-parametric Model-assisted Estimation Of Finite Populatiomentioning
confidence: 99%
See 3 more Smart Citations
“…One way of guarding against model failure is to use non-parametric regression which does not require a predefined parametric mathematical expression for f . Breidt and Opsomer (2000) proposed local linear estimators and Breidt et al (2005) and Goga (2005) used non-parametric spline regression. The unknown f function is approximated by the projection of the population vector y U = .y k / k∈U onto different basis functions, such as the basis of truncated qth-degree polynomials in Breidt et al (2005) and the B-spline basis in Goga (2005).…”
Section: Non-parametric Model-assisted Estimation Of Finite Populatiomentioning
confidence: 99%
“…Breidt and Opsomer (2000) proposed local linear estimators and Breidt et al (2005) and Goga (2005) used non-parametric spline regression. The unknown f function is approximated by the projection of the population vector y U = .y k / k∈U onto different basis functions, such as the basis of truncated qth-degree polynomials in Breidt et al (2005) and the B-spline basis in Goga (2005). In what follows, we briefly recall the definition and the main asymptotic properties of non-parametric model-assisted estimators for finite population totals (see also Breidt and Opsomer (2009)).…”
Section: Non-parametric Model-assisted Estimation Of Finite Populatiomentioning
confidence: 99%
See 2 more Smart Citations
“…5-7); generalised regression estimators under any parametric linear model (Cassel, Särndal, and Wretman 1976;Särndal, Swensson, and Wretman 1992), calibration estimators (Deville and Särndal 1992;Wu and Sitter 2001), and empirical likelihood estimators (Chen and Sitter 1999;Chen, Sitter, and Wu 2002). The desire for flexible specification of f (·) has led to the consideration of local polynomial regression (Breidt and Opsomer 2000), penalised splines (Breidt et al 2005), neural networks (Montanari and Ranalli 2005b), regression splines (Goga 2005), additive and generalised additive models (Opsomer, Breidt, Moisen, and Kauermann 2007; Wang and Wang 2011), among many others. See Särndal (2007) for some general review of model-assisted estimation and Montanari and Ranalli (2005a) and Breidt and Opsomer (2009) for nonparametric and semiparametric model-assisted methods.…”
Section: Introductionmentioning
confidence: 97%